Abstract

The poor stability of organometallic halide perovskite in humid environments is one of the biggest challenges for its commercialization in light harvesting and electroluminescent displays. Understanding the atomic detail of the perovskite/water (oxygen) interface is a critical way to explore the practicability of perovskite. In this work, we report a density functional study of water and oxygen adsorption on the Cs/Rb incorporated FAPbI3 (001) surface. The role played by water and oxygen molecules has been extensively studied in the initial degradation processes, where the strong interactions between adsorbates and perovskite surfaces are confirmed. Our results show that the dopant-terminated surface was relatively more stable than PbI2-termination one. The effects of doping on the optoelectronic properties were slight at low concentrations. The calculations showed that the molecule tend to adsorb on the I-top site of the Cs-terminated surface and the Pb-top site of the PbI2 (Cs)-terminated surface. The vdW contribution on the bonding between bare surface and molecule can be observed. The degradation-induced optical absorption decrease in the visible region could be found. Water and oxygen molecule destroy the perovskite surface structures and subsequently reduce its conversion efficiency. These findings contribute molecular-level insight into the initial stage of perovskite degradation, which should be helpful to inspire new interfacial modifications to improve the stability of corresponding perovskite materials under wet conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.