Abstract
The reactivities of the stoichiometric and partially reduced rutile TiO2(110) surfaces towards oxygen adsorption and carbon monoxide oxidation have been studied by means of periodic density functional theory calculations within the Car-Parrinello approach. O2 adsorption as well as CO oxidation are found to take place only in the presence of surface oxygen vacancies (partially reduced surface). The oxidation of CO by molecularly adsorbed O2 at the O-vacancy site is found to have an activation energy of about 0.4 eV. When the adsorbed O2 is dissociated, the resulting adatoms can oxidize incoming gas-phase CO molecules with no barrier. In all studied cases, once CO is oxidized to form CO2, the resulting surface is defect-free and no catalytic cycle can be established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.