Abstract

First-principles study is used to comparatively investigate the mechanism of bubble formation of hydrogen at Fe/W interfaces and the effects of H on interface cohesion. It is found that hydrogen at interfacial sites has a negative binding energy, which is quite different from W and Fe bulks with interstitial hydrogen. The hydrogen solubility of the interface is bigger than W and Fe bulks with the increasing temperature, predicting that the Fe/W interface can more easily trap hydrogen and rapidly form bubbles. In addition, we also reveal the sites of hydrogen have an important role on cohesion properties of Fe/W interface, and that the obvious increase of interface strength and stability have been found in the locations of hydrogen relatively far away the center between Fe and W interface layers. The derived results are discussed extensively through comparing with available observations in the literature, and could give a deep understanding of hydrogen at Fe/W interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.