Abstract
We have investigated the adsorption of nine different adatoms on the (111) and (100) surfaces of Iridium (Ir) using first principles density functional theory. The study explores surface functionalization of Ir which would provide important information for further study of its functionality in catalysis and other surface applications. The adsorption energy, stable geometry, density of states and magnetic moment are some of the physical quantities of our interest. The study reveals that the three-/four-fold hollow site is energetically the most favorable adsorption site on the (111)/(100) surface of Ir. The investigation on a wide range of coverages (from 0.04 to 1 monolayer) reveals the strong coverage dependence of adsorption energy of the adsorbate atoms. The adsorption energy is found to increase as the coverage increases, implying a repulsive interaction between the adsorbates. Strong hybridization between the adsorbates and the substrate electronic states is revealed to impact the adsorption, while the magnetic moment of the adsorbates is found to be suppressed. The Bader analysis reveals significant amount of charge transfers between the adsorbate atoms and the substrate. The binding of adsorbate atoms on the (100) surface is observed to be moderately stronger as compared to that on the (111) surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.