Abstract

The electronic properties of MoS2 monolayer with various levels of Mn incorporation are investigated using the Heyd-Scuseria-Enrzerhof hybrid functional. Four Mn doping concentrations are considered: 2.78%, 6.25%, 11% and 25%. Results show that, with the increasing Mn doping, the Mn-induced intermediate band (IB) ranges from the localized to dispersive states, effectively acting as a stepping stone to help relay valence electrons to the conduction band. Simultaneously, the IB divides the band gap into narrower subgaps, inducing significant band-gap reduction. The combined effects of the IB widening and the band-gap narrowing engineer the band structure to extend the optical absorption of MoS2 monolayer into the long-wavelength region of solar irradiance. Detailed formation-energy calculations reveal a high favorability for Mn to substitute Mo in MoS2 monolayer under the Mo-poor condition. This work provides a fundamental guidance for broadening the functional applications of MoS2 monolayer in photocatalysis, photovoltaic cells and other photonic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.