Abstract

AbstractTotal-Energy pseudopotential calculations are used to study both the onset and development of plasticity in nanoindentation experiments and the contrast mechanism in non-contact AFM images on Si (111) surfaces. As regards nanoindentation, plastic flow of atoms towards interstitial positions and extrusion of material towards the tip walls, stabilized by the adhesive interactions with the tip, are the dominant mechanisms. These plastic deformations are triggered by the delocalization of the charge induced by the stress in the elastically compressed structure. Atomic resolution contrast in AFM is shown to be clearly enhanced by the partial covalent chemical interaction between the dangling bonds of the adatoms in the surface and the apex atom in the tip. The contrast mechanism can be understood in terms of the coupling between the tip and the charge transfer modes among the different dangling bonds in the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.