Abstract

Based on first-principles calculations, the structures, stabilities, electronic properties, and mechanical properties as well as optical properties of two new hexagonal silicon allotropes (Hex-193 and Hex-194) were theoretically investigated. Both Hex-193 and Hex-194 are confirmed to be meta-stable phases with energetic stability exceeding the previously proposed Si-20 and the experimentally viable Si-24. They are also confirmed to be dynamically and elastically stable silicon phases according to their calculated phonon band structures and mechanical properties. The HSE06-based band structures of Hex-193 and Hex-194 indicate that they are quasi-direct bandgap semiconductors with fundamental bandgaps of 1.275 eV (direct bandgap is 1.277 eV) and 1.200 eV (direct bandgap is 1.302 eV), respectively. Further investigation of the optical properties shows that both Hex-193 and Hex-194 exhibit a stronger absorption coefficient in comparison to that of diamond silicon, which indicates that both are potential materials for solar-cell application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.