Abstract

We present first-principles calculations of phase coherent electron transport in a carbon nanotube (CNT) with realistic contacts. We focus on the zero-bias response of open metallic CNT's considering two archetypal contact geometries (end and side) and three commonly used metals as electrodes (Al, Au, and Ti). Our ab initio electrical transport calculations make, for the first time, quantitative predictions on the contact transparency and the transport properties of finite metallic CNT's. Al and Au turn out to make poor contacts while Ti is the best option of the three.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.