Abstract

AbstractSingle neutral and positively charged oxygen vacancies (F and F+ centers) in α‐Al2O3 are investigated using the supercell model (SCM) at the Hartree‐Fock (HF) and density functional theory (DFT) level and the cyclic cluster model (CCM) implemented in the semiempirical MSINDO method. Results of supercell and cyclic cluster calculations for the cohesive energy of the perfect Al2O3 crystal are compared with the experimental value for the heat of atomization. The defect formation energy of the unrelaxed F center is calculated with the SCM. The CCM is used to calculate the defect formation energy of the F and the F+ centers. Relaxation effects for the nearest neighbors (NN) and the next‐nearest neighbors (NNN) of the F and F+ centers are investigated. The obtained values are compared to other theoretical literature data. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call