Abstract

We have carried out first-principles molecular dynamics simulations of glass and liquid germanium dioxide (GeO2) over a wide range of pressure. Our results show that in the glass GeO2 system nearly all Ge–O coordination environments are fourfold at low compression, whereas at high compression five- and sixfold coordination types coexist. In the liquid GeO2 system although most Ge–O coordination environments are fourfold, some threefold coordination types exist at low compression. Pentahedral units also exist in the liquid state while less than that in the glass state. At high compression, pentahedral units disappear and GeO6 octahedron is dominant in the liquid state going with some sevenfold coordination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.