Abstract

ABSTRACTFirst-principles calculations are performed for high-K gate dielectric materials using model bulk and interface systems. Detailed electronic structures and atomic configurations are investigated for transition metal (Hf and Zr) oxide, metal doped silicate bulk system and a model Si-silicate interface system. Pseudo polymorphs of metal oxides are investigated to elucidate the underlying driving mechanisms in microscopic configurations of metal oxides and silicates in amorphous structures. We studied energetics and electronic structure of metal oxide pseudo morph with varying oxygen coordination. Dielectric constants of metal oxide and silicate materials are also investigated using the density functional perturbation theory method implemented in the ABINIT code. Electronic and dielectric properties of silica interface layers between high-κ dielectric and Si substrate are investigated leading to a confirmation that 1 nm is the physical limit of gate oxide thickness. Furthermore silica interface layer is found to have small dielectric constant of 3.4∼3.9.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call