Abstract

Three kinds of Pt-Cu bimetallic catalysts (Cu/Pt (111), Pt/Cu/Pt (111), and Pt4Cu5/Pt (111)) have been researched employing density functional theory (DFT) calculation, using dehydrogenation of cyclohexene to benzene as a probe reaction. The adsorption energies are basically in the sequence: Pt4Cu5/Pt (111) > Cu/Pt (111) ≈ Pt/Cu/Pt (111). The key step is C6H9 → C6H8 on Cu/Pt (111) (0.85eV) and Pt/Cu/Pt (111) (0.87eV). On Pt4Cu5/Pt (111), the key step is C6H7 → C6H6 (1.17eV). The selectivity for gas phase benzene is in the order of Cu/Pt(111) > Pt/Cu/Pt(111) > Pt4Cu5/Pt(111), according to the energy difference between the barrier of benzene dehydrogenated to phenyl and benzene desorption. The co-adsorbed hydrogen atoms lead to improved selectivity for gas phase benzene on Cu/Pt (111) and Pt/Cu/Pt (111), by making benzene desorption easy but dehydrogenation difficult. However, the barrier of benzene dehydrogenation decreases with the increase of H coverage on the Pt4Cu5/Pt (111) due to obvious destabilized benzene, and thus the effect on Pt4Cu5/Pt (111) is closely related to the concentration of surface H. Attributed to thermodynamic stability, high activity, and selectivity for gas benzene, the Pt/Cu/Pt (111) structure is suggested as reasonable dehydrogenation catalyst, and the dehydrogenation process on Pt/Cu/Pt(111) has been further studied by microkinetic modeling. A volcano-like relationship is found between the adsorption of cyclohexene and the TOF (turnover frequency) of gas phase benzene. Secondly, two apparent activation energies are obtained: 0.77eV (250~350K) and 0.45eV (350~650K), implying the RDS (rate-determined step) changes with temperature. Graphical abstract The influence of temperature and desorption barrier of cyclohexene on the TOF of C6H6(g).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.