Abstract
In this article, we investigate the electronic, dielectric, dynamic, and elastic properties of new magnesium nitridoboride (MgNB 9 ) using a first-principles approach based on density functional theory. No available experimental or theoretical investigations of these physical properties have been previously reported in the literature. Our work shows that MgNB 9 is a semiconducting positive uniaxial trigonal material with an indirect band gap (Z-L) of 1.76 eV and mixed ionic-covalent character. In addition, its electronic dielectric tensor is nearly isotropic, and the magnitude of its components is similar to those reported for ferroelectric materials. By contrast, its static dielectric tensor is strongly anisotropic in the plane orthogonal to its optical axis. This anisotropy is mainly governed by a highly polar low-frequency mode assigned to localized Mg motions. Furthermore, this material is mechanically stable, and its bulk and shear moduli are larger than those reported on III-V semiconductors. These results suggest that MgNB 9 could be a promising potential material for applications in optoelectronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.