Abstract

Nanoribbons with different edge functionalization display interesting electronic properties for various device applications. It requires the necessity of exploring the novel passivating elements commensurate to various technological applications. In this direction, here we have compared the effect of H and F-passivation on the edges of zigzag SiC nanoribbons (ZSiCNR) using density functional theory based calculations. Remarkably, present study reveals that F could be used as an effective passivating element for ZSiCNR similar to widely explored H-passivations. Various possible combinations of F/H are found to have stable structural integrity for practical applications. The effect of F-adatom adsorption is also discussed which present peculiar electronic properties. The half-metallic behavior is observed to be realized via F-adsoprtion which is further confirmed with the transport calculations. The obtained negative differential resistance along the spin dependent electron transport pledges towards wide spread applications of considered ZSiCNR interacting with F.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call