Abstract
The electronic structures of Ti2NbSb with Hg2CuTi structure and TiZrNbSb with LiMgPdSn structure are investigated using first-principles calculations. The results indicate that Ti2NbSb is a fully compensated ferrimagnetic spin-gapless semiconductor with an energy gap of 0.13 eV, and TiZrNbSb is a half-metallic fully compensated ferrimagnet with a half-metallic gap of 0.17 eV. For Ti2NbSb, the total energy of the Hg2CuTi structure is 0.62 eV/f.u. higher than that of the L21 structure, which is the ground state, and for TiZrNbSb, the total energy of the structure considered in this work is only 0.15 eV/f.u. larger than that of the ground state. Thus both of them may be good candidates for spintronic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.