Abstract

Density functional theory calculations have been carried out to analyze the factors contributing to the stabilities of a set of recently synthesized quaternary polar intermetallic compounds, (EuxM1–x)2Ge2Pb with M = Ca, Sr, and Ba. Experiments showed that these preferentially crystallized with Pbam (M = Ca) or Cmmm (M = Sr, Ba) symmetry. We systematically explored how the electronic energies of these structures depended on how they were “colored” by the europium/M ions for a wide composition range. It was found that whereas there was very little site preference in the Cmmm structure, the “B” site in the Pbam structure strongly preferred smaller cations. The configurational entropy was also found to play a role in determining which structures might be preferred. However, the experimentally obtained product ratios could only be fully rationalized by the Gibbs free energies of structures containing M:Eu ratios resembling those that were synthesized experimentally. Our results highlight the importance of calculating vibrational contributions to the entropy for realistic structure models (in terms of coloring and composition) to explain product ratios for syntheses carried out at high temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.