Abstract

The diffusion is of great significance in many applications when the impurities are employed to tune the semiconductor's electrical or optical properties. It is necessary to understand how dopant defects diffuse in semiconductors. Using first-principles calculations, we consider interstitial diffusion mechanisms and calculate the migration barrier energies of interstitial Cu, Ag and Au atoms in II–VI compounds ZnTe. We find that the relative size of dopant and bulk atoms is an important factor which affects the diffusion behavior. The high symmetry Tc site, which is tetrahedrally coordinated by four cation atoms, is the global minimum energy location for Ag and Au interstitials. The size of Cu adatom is small, so Cu is more stable when it locates at the Ta site which is tetrahedrally coordinated by four anion atoms. But the global minimum energy location for Cu interstitials is M site which is of smaller space than Ta. Cu adatoms show an asymmetric curve of energy diffusion barrier with two energetically distinct extremum in the pathway. Ag diffuses along nearly straight line paths along [111] or equivalent directions. Diffusion for Cu or Au deviates from the straight line paths along 〈111〉 avoiding high symmetric sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call