Abstract
1. The application of novel ab initio quantum mechanical methods to the states in the catalytic cycle of cytochrome P450 following the first reduction step is described. 2. A good correlation was found between the calculated energy of reduction and the experimentally determined redox potential for a range of substrate- and substrate analogue bound systems. 3. On reduction of the haem system, the ground state of Fe remains Fe3+. On binding of a CO molecule, Fe adopts a low-spin Fe2+ state, in agreement with experiment. However, on binding of an O2 molecule, calculations indicate that the system adopts a ferric superoxide ground state, in which the Fe is in a low-spin Fe3+ state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.