Abstract

First-principles thermodynamic models based on the cluster expansion formalism, Monte Carlo simulations, and quantum-mechanical total energy calculations are employed to compute short-range-order (SRO) parameters and diffuse-antiphase-boundary energies in hcp-based α-Ti-Al alloys. Our calculations unambiguously reveal a substantial amount of SRO is present in α-Ti-6 Al and that, at typical processing temperatures and concentrations, the diffuse antiphase boundaries (DAPB) energies associated with a single dislocation slip can reach 25 mJ/m2. We find very little anisotropy between the energies of DAPBs lying in the basal and prism planes. Perfect antiphase boundaries in DO19-ordered Ti3Al are also investigated and their interfacial energies, interfacial stresses, and local displacements are calculated from first principles through direct supercell calculations. Our results are discussed in light of mechanical property measurements and deformation microstructure studies in α-Ti-Al alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call