Abstract

AbstractFirst-principles calculations are performed to investigate lattice parameters, elastic constants and 3D directional Young’s modulus E of nickel silicides (i.e., β-Ni_3Si, δ-Ni_2Si, θ-Ni_2Si, ε-NiSi, and θ-Ni_2Si), and thermodynamic properties, such as the Debye temperature, heat capacity, volumetric thermal expansion coefficient, at finite temperature are also explored in combination with the quasi-harmonic Debye model. The calculated results are in a good agreement with available experimental and theoretical values. The five compounds demonstrate elastic anisotropy. The dependence on the direction of stiffness is the greatest for δ-Ni_2Si and θ-Ni_2Si, when the stress is applied, while that for β-Ni_3Si is minimal. The bulk modulus B reduces with increasing temperature, implying that the resistance to volume deformation will weaken with temperature, and the capacity gradually descend for the compound sequence of β-Ni_3Si > δ-Ni_2Si > θ-Ni_2Si > ε-NiSi > θ-Ni_2Si. The temperature dependence of the Debye temperature ΘD is related to the change of lattice parameters, and ΘD gradually decreases for the compound sequence of ε-NiSi > β-Ni_3Si > δ-Ni_2Si > θ-Ni_2Si > θ-Ni_2Si. The volumetric thermal expansion coefficient αV, isochoric heat capacity and isobaric heat capacity C _ p of nickel silicides are proportional to T ^3 at low temperature, subsequently, αV and C _ p show modest linear change at high temperature, whereas C _v obeys the Dulong-Petit limit. In addition, β-Ni_3Si has the largest capability to store or release heat at high temperature. From the perspective of solid state physics, the thermodynamic properties at finite temperature can be used to guide further experimental works and design of novel nickel–silicon alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.