Abstract

As part of the concerted effort for development of energy storage technologies, dual-ion batteries (DIBs) or dual-carbon batteries (DCBs) are attracting interest, owing primarily to their eco-friendly active materials. The use of carbon as the active materials of DCBs brings about several challenges involving capacity and stability. This contribution aims to provide an in-depth understanding of the structural and electronic properties of Ge-doped graphene (Germagraphene) as a novel cathode material for DCBs. Density functional theory (DFT) calculations are combined with the effective screening medium (ESM) method for analyzing the electronic and band structure of PF6 - anion-adsorbed Germagraphene under a potential bias. These theoretical investigations indicate that the use of Ge as a dopant for graphene has a positive impact on the adsorption of the anion on the cathode under both neutral and electrically biased conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call