Abstract

The hydrogen (H) diffusion process is a crucial issue related to storage of plutonium safely. In this work, first-principles GGA + U calculation is performed to elucidate the hydriding and diffusion behaviors of an additional H atom (Hi) in “perfect” PuH2+x (0 ≤x≤ 1) matrixes. It finds the value of incorporation energy increases with increasing x. The interaction energies show that an extra Hi atom interacts much further with surrounding host atoms in PuH3 than in other Pu hydride matrixes. The minimum migration paths of a Hi atom in PuH2+x are characterized by the image nudged elastic band (CINEB) method. The Hi atom diffuses in PuH2, PuH2.25, and PuH5 matrixes through directly migrating from an octahedral interstice to its nearest octahedral site with energy barriers of 1.36 eV, 1.15 eV, and 1.59 eV, respectively. Oppositely, the metastable IH-site plays a dominant role for the Hi migration into the O-site in PuH2.75. The diffusion path of the Hi atom in PuH3 is IPu → IH0160 → IPU path with the lowest migration energy of 0.72 eV, which concludes the Hi has relatively higher mobility in PuH3. These findings provide detailed insight into how the H atom corrodes the Pu metal by connecting H atom diffusion in PuH2, PuH3, and intermediate compositions, which can be great interest for assisting the development of the new nuclear fuel for next generation reactors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.