Abstract

Systematic first-principles calculations of the single crystal elastic stiffness constants (cij?s) and the polycrystalline aggregates including bulk modulus (B), shear modulus (G), Young?s modulus (E) have been performed for series binary and ternary Al compounds at 0 K. In addition, the temperature-dependent elastic properties for some technologically important phases are calculated. The cij?s are calculated by means of an efficient strain-stress method. Phonon density of states or Debye model is employed to calculate the linear thermal expansion, which is then used to calculate the temperature dependence of elastic properties. The calculated temperature-dependent elastic properties are compiled in the format of CALPHAD (CALculation of PHAse Diagram) type formula. The presently computed elastic properties for Al compounds are needed for simulation of microstructure evolution of commercial Al alloys during series of processing route.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.