Abstract

Starting from the time-harmonic Maxwell's equations in cylindrical coordinates, we derive and solve the finite-difference (FD) eigenvalue equations for determining vector modes of axially symmetric resonator structures such as disks, rings, spheres and toroids. Contrary to the most existing implementations, our FD scheme is readily adapted for both eigenmode and eigenfrequency calculations. An excellent match of the FD solutions with the analytically calculated mode indices of a microsphere resonator provides a numerical confirmation of the mode-solver accuracy. The comparison of the presented FD technique with the finite-element method highlights the relative strengths of both techniques and advances the FD mode-solver as an important tool for cylindrical resonator design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.