Abstract

First-principles density functional theory–generalized gradient approximation methods have been used to calculate the energetics (incorporation energy, formation energy and binding energy) of rare gases (He, Ne, Ar, Kr and Xe) at the three incorporation sites (octahedral interstitial, uranium and oxygen vacancies) of uranium dioxide. The Hubbard parameter U and van der Waals corrections have been used to describe the strongly correlated electronic behavior of uranium 5f electrons and the weak interactions of rare gases, respectively. The results indicate that the energetics of rare gases depend significantly on the incorporation sites and on the atomic properties such as atomic radius. All rare gases considered here are energetically unfavorable at the three incorporation sites. However, rare gases exhibit significant binding ability to both U and O vacancies. The main trends of relative stability of rare gases generally reflect a size effect: the rare gases become more unstable with increasing atomic number. Electronic structures of these systems containing rare gases also exhibit general trends in their relative stability and charge-transfer character.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call