Abstract
In this letter, the full set of elastic coefficients of LaPO4 monazite is presented based on the first-principles plane-wave pseudopotential total energy method. Mechanical parameters (bulk modulus, shear modulus, Young’s moduli, and Poisson’s ratio) are also presented and compared with experimental results for polycrystalline monazite. The responses of electronic structure and chemical bonds to a series of {010}⟨001⟩ shear strains are examined in order to study the mechanism of low shear strain resistance. The results show that small shear moduli originate from the inhomogeneous strengths of atomic bonds. For example, the weak La–O bonds accommodate the shear strain locally, while the PO4 tetrahedra are almost rigid. The theoretical elastic stiffness may be useful to understand the deformation mechanisms of LaPO4 monazite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.