Abstract

The absolute hydration free energy of the hydroxide ion, Δ (HO-), a fundamental quantity in solution chemistry, has “experimental” values ranging from −90.6 to −110.0 kcal/mol. We report a first-principles determination of Δ (HO-) by using a reliable computational protocol of high-level first-principles supermolecule-continuum calculations, the same approach recently used to determine the absolute hydration free energy of the proton. In the supermolecule-continuum approach, part of the solvent surrounding the solute is treated quantum mechanically, and the remaining bulk solvent is approximated by a dielectric continuum medium accounted for by a recently developed self-consistent reaction field model known as surface and volume polarization for electrostatic interaction (SVPE) or the fully polarizable continuum model (FPCM). With this approach, the calculated results can systematically be improved by increasing the number of quantum mechanically treated solvent molecules, and Δ (HO-) is accurately predict...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.