Abstract

The performance of bulk organic and hybrid organic-inorganic heterojunction photovoltaics is often limited by high carrier recombination arising from strongly bound excitons and low carrier mobility. Structuring materials to minimize the length scales required for exciton separation and carrier collection is therefore a promising approach for improving efficiency. In this work, first-principles computations are employed to design and characterize a new class of photovoltaic materials composed of layered transition metal phosphates (TMPs) covalently bound to organic absorber molecules to form nanostructured superlattices. Using a combination of transition metal substitution and organic functionalization, the electronic structure of these materials is systematically tuned to design a new hybrid photovoltaic material predicted to exhibit very low recombination due to the presence of a local electric field and spatially isolated, high mobility, two-dimensional electron and hole conducting channels. Furthermore, this material is predicted to have a large open-circuit voltage of 1.7 V. This work suggests that hybrid TMPs constitute an interesting class of materials for further investigation in the search for achieving high efficiency, high power, and low cost photovoltaics.

Highlights

  • The performance of bulk organic and hybrid organic-inorganic heterojunction photovoltaics is often limited by high carrier recombination arising from strongly bound excitons and low carrier mobility

  • We propose a new class of nanostructured hybrid organic-inorganic photovoltaics composed of layered transition metal phosphates (TMPs) covalently bound to organic absorber molecules to form nanostructured superlattices

  • We have presented a new approach for the design of hybrid organic-inorganic photovoltaics with low carrier recombination and large open-circuit voltage

Read more

Summary

Discussion

To achieve the desired alignment of the valence band edge (VBE) of the organic absorber and TMP hole conducting layer, we require an upward shift of approximately 0.8 eV in the VBE of the latter. Out-of-plane effective masses are 109.8 and 43.6 for the electron and hole layers, respectively, indicating free charge carriers will not be able to travel normal to their respective sheet, further preventing recombination. These values suggest these layers are sufficiently conducting to facilitate charge carrier extraction to the electrodes

Conclusions
Additional Information
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call