Abstract

The electronic structures of four tin-based 0D hybrid perovskites ((NH3(CH2)2C6H5)2[SnCl6], (C6H10N2)[SnCl6], (C9H14N)2[SnCl6], and (C8H12N)2[SnCl6]) were determined by the DFT method employing the pseudopotential plane wave as implemented in the CASTEP code, and the first transition in each compound has been investigated based on the partial density states and dielectric function. According to the structural properties, incorporating organic cations with the appropriate structure, shape, and strong H-bonding functionality into hybrid perovskite crystals is very beneficial for preventing ion migration and thus enhances the efficiency of hybrid perovskite-based devices. Based on those properties employing the DFT+D method for the dispersion force, the effect of Van der Waals interaction on electronic structure was explained based on the nature of the first electronic transition. The similarity between the experimental and optimized structure was investigated by using a Bilbao crystallographic server. The study of optical properties shows that the Van der Waals interactions have a slight effect on the energy level of the curves. However, the profiles of curves are conserved. The absorption curves of the researched compounds are elaborated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call