Abstract

Sulfide nanocrystals and their composites have shown great potential in the thermoelectric (TE) field due to their extremely low thermal conductivity. Recently a solid and hollow metastable Au2S nanocrystalline has been successfully synthesized. Herein, we study the TE properties of this bulk Au2S by first-principles calculations and semiclassical Boltzmann transport theory, which provides the basis for its further experimental studies. Our results indicate that the highly twofold degeneracy of the bands appears at the Γ point in the Brillouin zone, resulting in a high Seebeck coefficient. Besides, Au2S exhibits an ultra-low lattice thermal conductivity (∼ 0.88 W⋅m−1⋅K−1 at 700 K). At 700 K, the thermoelectric figure of merit of the optimal p-type doping is close to 1.76, which is higher than 0.8 of ZrSb at 700 K and 1.4 of PtTe at 750 K. Our work clearly demonstrates the advantages of Au2S as a TE material and would greatly inspire further experimental studies and verifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call