Abstract

Chalcogenide crystals have a wide range of applications, especially as thermoelectric materials for energy conversion. Thermoelectric materials can be used to generate an electric current from a temperature gradient based on the Seebeck effect and based on the Peltier effect, and they can be used in cooling applications. Using first-principles calculations and semiclassical Boltzmann theory, we have computed the Seebeck coefficient, electrical conductivity, electronic thermal conductivity, power factor, and figure of merit of 30 chalcogenide crystals. A Quantum Espresso package is used to calculate the electronic properties and locate the Fermi level. The transport properties are then calculated using the BoltzTraP code. The 30 crystals are divided into two groups. The first group has four crystals with quaternary composition (A2BCQ4) (A = Tl; B = Cd, Hg; C = Si, Ge, Sn; Q = S, Se, Te). The second group contains 26 crystals with the ternary composition (A’B’Q2) (A’ = Ag, Cu, Au, Na; B’ = B, Al, Ga, In; Q = S, Se, Te). Among these 30 chalcogenide crystals, the results for 11 crystals: Tl2CdGeSe4, Tl2CdSnSe4, Tl2HgSiSe4, Tl2HgSnS4, AuBSe2, AuBTe2, AuAlTe2, AuGaTe2, AuInTe2, AgAlSe2, and AgAlTe2 are revealed for the first time. In addition, temperature-dependent transport properties of pure and doped AgSbSe2 and AgSbTe2 crystals with dopant compositions of AgSb0.94Cd0.06Te2 and AgSbTe1.85Se0.15 were explored. These results provide an excellent database for bulk chalcogenides crucial for a wide range of potential applications in renewable energy fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call