Abstract

We study the structural and electronic properties of YxIn1-xN in the concentrations x = 0, ¼, ½, ¾, and 1 in the B1, B2, B3 and B4 structures using density functional theory (DFT). The calculations show that for Y0.75In0.25N, the B1 structure is the most favorable energetically. It was determined that between in the supercell, the most energetically stable structure is the B3 phase. Additionally, between concentrations x of Yttrium, the compound is most energetically favorable in the B4 phase. Technical data that are in agreement were recently reported by other authors. Finally, between 0.12 , the most stable phase is B1. Additionally, there is no phase transition between the four structures considered. The DOS and band structure show that Y0.75In0.25N in the B1 and B3 phases exhibits semiconductor behavior, with a direct gap of ~0.6 eV and ~0.7 eV, respectively while Y0.75In0.25N in the B4 phase has an indirect one of ~0.8 eV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.