Abstract

Combining the first-principles noncollinear calculations of scattering matrices with Andreev approximation, we investigated the spin-triplet Andreev reflection (AR) spectra for the interface between half-metallic ferromagnet Co 2 MnSi and s-wave BCS superconductor Al with and without interfacial roughness, where the orientations of magnetic moments near the interface are randomly distributed. The calculated results show that the AR spectra have peak structures near zero bias for the clean interface with relative weak magnetic disorder. With the increasing degree of interfacial roughness or magnetic disorder, these subgap peaks of conductance spectra will be washed out. The results also show that the value of subgap conductance spectrum can be raised significantly by the magnetic disorder. Finally, our calculations reveal that the long-range spin-triplet AR in Co 2 MnSi / Al (001) interface can be enhanced by a small amount of interfacial roughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.