Abstract

In this paper the relationship between the surface relaxations and the electron density distributions of surface states of Cu(100), Cu(110), and Cu(111) surfaces is obtained by first-principles calculations. The calculations indicate that relaxations mainly occur in the layers at which the surface states electrons are localized, and the magnitudes of the multilayer relaxations correspond to the difference of electron density of surface states between adjacent layers. The larger the interlayer relaxation is, the larger the difference of electron density of surface states between two layers is.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call