Abstract

The structure, total energy and orthorhombic as well as tetragonal electronic properties of K1-xNaxNbO3 (KNN) as a function of Na concentration were studied with first principles calculations. When the Na content of KNN was gradually increased the orthogonal phase transformation occurred, which produced an enhanced piezoelectric response of the tetragonal KNN. This result proved that the high d33 originated from the phase transition. The corresponding calculations reveal that the change of Nb-O bond length is the origin of distortion of Nb-O octahedral and phase transition. In addition, the calculations observed an unusual high peak of the KNN piezoelectric parameter, which showed the same trend as the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.