Abstract

First-principles electronic structure calculations have been performed for defect structures in nonstoichiometric B2 AlCo and GaCo. To determine the type of constitutional defects, the compositional dependence of the energy of formation and lattice parameter was obtained by calculations employing supercells of various sizes (16 and 32 atoms) as well as special quasirandom structures (SQSs) developed for random pseudobinary A1−xBxC with compositions x = 0.25 and 0.5. According to the results, Co vacancies are the constitutional point defects in the Al-rich side of both B2 AlCo and B2 GaCo, while Co vacancies present the minimum energy for the Ga-rich side. For the Co-rich side of both B2 AlCo and B2 GaCo, the Co antisite is the most stable defect. To investigate the thermal defect concentrations at finite temperature, we adopted the Wagner–Schottky model using enthalpies of formation of point defects obtained from the SQS approach. The present results suggest that the predominant thermal defects in AlCo are of complex type whereas for GaCo they are of interbranche Co type. The results of these calculations show agreement with available theoretical and experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call