Abstract

In this study, we use first-principles simulations to study the adsorption of copper onto H-terminated and partially OH-terminated silicon surfaces. We show that, in contrast to previous studies, copper adsorbs strongly to the H-terminated silicon surface and that the adsorption energy is significantly dependent on the local bonding environment. The addition of a hydroxide group increases the average adsorption energy while reducing the range of adsorption energies due to the strong interaction between copper and oxygen. Our results predict that copper will generally prefer to adsorb at dihydride sites on the surface, agreeing with experimental studies of copper nucleation. The adsorption energy hierarchy predicted by the calculations strongly supports the suggestion that copper acts as a micromask in wet chemical etching, blocking reactive sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.