Abstract

Zn1−xCdxO thin films are deposited on quartz substrate by pulse laser deposition. Their band structure and optical properties are experimentally and theoretically investigated. By varying Cd concentration, the band gap of Zn1−xCdxO films can be adjusted in a wide range from 3.219 eV for ZnO to 2.197 eV for Zn0.5Cd0.5O, which produces different emissions from ultraviolet to Kelly light in their photoluminescence spectra. Simultaneity, the electronic structure and band gap of Zn1−xCdxO are investigated by the density functional theory (DFT) with a combined generalized gradient approximation (GGA) plus Hubbard U approach, which precisely predicts the band-gaps of ZnO and Zn1−xCdxO alloys. Both the experimental results and theoretical simulation reveal that with increasing Cd concentration in Zn1−xCdxO alloys, their absorption coefficients in visible light range are evidently enhanced. The adjustable photoluminescence emission and enhanced visible light absorption endow Zn1−xCdxO alloys potential applications in optoelectronic and photocatalytic fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.