Abstract

Based on first-principles spin-density functional calculations, we investigate the electronic and magnetic properties of Mn-doped GaN nanotubes in which two of Ga atoms are substituted by Mn atoms. Similar to the case of Mn in bulk GaN, our calculations show that Mn atoms also act as an acceptor and all of the ground states for the Mn-doped GaNNTs are ferromagnetic. Moreover, the ferromagnetism is isotropic and independent of the chirality and diameter of the nanotubes. It is found that the most favorable configuration is the first-nearest neighbor Mn model, which is mainly mediated by both the hole–hole interaction and the dipole–dipole interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call