Abstract

A complete thermodynamic description of the Yb-Ni binary system is developed by means of the CALculation of PHAse Diagram (CALPHAD) method in combination with first-principles calculations based on density functional theory (DFT) and available experimental data in the literature. Finite temperature thermodynamic properties of the Yb-Ni intermetallic compounds are predicted using the quasi-harmonic approach, where first-principles phonon calculations are performed to calculate the lattice vibrational entropy. The associate solution model is used to describe the complex thermodynamic behavior of the liquid phase. The calculated phase diagram agrees well the experimental phase equilibrium data in the literature. By the coupling of CALPHAD modeling with first-principles calculations, the present work provides a more thermodynamically accurate model of the Yb-Ni system when compared to previous models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.