Abstract

At present, the hydrogen evolution reaction (HER) of Ni-based electrode has an important influence on water electrolysis hydrogen production technology, involving complex electrochemical process of electrode. In this project, Materials Studio (MS) software was used to design and construct Ni-based electrode surface (NES) models with monatomic Mo, Co, Fe, Cr doping, and the NES models attached 1 H atom and 2H atoms were denoted as the NES-H models and NES-2H model, respectively. Then the first-principles calculation was carried out.The results showed that the doping of different atoms can effectively change the work function of the pure Ni. In the charge transfer process of the four NES-2H models, the distance between the two H atoms is most affected by Mo doping, and they leave the Ni electrode surface as a single H ion, respectively, while the effect on Co, Fe and Cr doping is relatively consistent, and they leave the Ni electrode surface with H2 molecules, respectively. The doping of four single atoms changes the distance of valence band (VB) top and conduction band (CB) bottom from Fermi level in NES, NES-H and NES-2H models, and affects the HER, in which Mo doping has the greatest effect. The TDOS of the above models is mainly derived from the PDOS of the d orbitals of the doped atoms and Ni atoms. The results will provide a theoretical basis for the research and development of Ni-based electrode materials in HER.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.