Abstract

Solar energy is a commonly used alternate source of energy and it can be utilized based on the principle of the photovoltaic effect. The photovoltaic effect converts sun energy into electrical energy using photovoltaic devices (solar cells). A solar cell device should have high efficiency and a long lifetime to be commercially beneficial. Presently, silicon and thin-film solar cells are widely employed. The crystalline solar cells are more efficient but they are also expensive. Thin-film solar cells are formed by placing one or more thin layers of photovoltaic materials on different substrates. Although these cells have a lower cost, they are also less efficient compared to Si-based solar cells. Organic-inorganic hybrid lead halide perovskite solar cells are one of the most promising low-cost power conversion efficiency technologies that could exceed the 26% threshold. However, the lack of environmental stability and of high lead toxicity are the main bottlenecks that impede the future industrialization and commercialization hybrid lead halide perovskite. Hence It is important to achieve high power conversion efficiency while also maintaining stability and non-toxicity in the development of new lead-free perovskite materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call