Abstract

We used first-principles methods to investigate how oxygen vacancy defects affect the optical properties of YBa2Cu3O7-δ (0 < δ < 1), a high-temperature superconductor with potential applications in optical detectors. We calculated the electronic structure of YBa2Cu3O7-δ with different amounts of oxygen vacancies at three different sites: Cu-O chains, CuO2 planes, and apical oxygens. The formation energy calculations support the formation of oxygen vacancies in the Cu-O chain at higher concentrations of vacancy defects, with a preference for alignment in the same chain. The presence of oxygen vacancies affects the optical absorption peak of YBa2Cu3O7-δ in different ways depending on their location and concentration. The optical absorption peaks in the visible range (1.6-3.2 eV) decrease in intensity and shift towards the infrared spectrum as oxygen vacancies increase. We demonstrate that oxygen vacancies can be used as a powerful tool to manipulate the optical response of YBa2Cu3O7-δ to different wavelengths in optical detector devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.