Abstract
ABSTRACTFirst-principles calculations of the inelastic lifetime of low-energy electrons in Al. Cu and Au are reported. Quasiparticle damping rates are evaluated from the knowledge of the electron self-energy, which we compute within the GW approximation. Inelastic lifetimes are then obtained along various directions of the electron wave vector, with full inclusion of the band structure of the solid. Average lifetimes are also reported, as a function of the electron energy. In Al splitting of the band structure over the Fermi level yields electron lifetimes that are smaller than those of electrons in a free-electron gas. In Cu and Au, a major contribution from d electrons participating in the screening of electron-electron interactions yields electron lifetimes which are well above those of electrons in a free-electron gas with the electron density equal to that of valence (4s1 and 6s1 respectively) electrons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.