Abstract
We derive the stress-tensor formula within the $\text{LSDA}+U$ scheme by differentiating analytically the $\text{LSDA}+U$ total-energy function with respect to the strain tensor. The rotationally invariant form of the $\text{LSDA}+U$ functional is employed and the double-counting correction is considered in the fully localized limit and around mean field. The electronic wave functions are expanded with either pseudoatomic orbitals (PAOs) or plane waves. In the PAO-basis case, the orthogonality stress term is included. Our $\text{LSDA}+U$ stress-tensor formula is numerically tested with antiferromagnetic NiO and reproduces successfully the stress values obtained from numerical derivatives of the total-energy values. As an application, we study elastic constants, bulk moduli, and sound velocities of NiO and MnO, obtaining results in good agreement with experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.