Abstract

A fully ab initio controlled ultrafast magnetooptical switching mechanism in small magnetic clusters is achieved through exploiting spin-orbit-coupling enabled Λ processes. The idea is that in the magnetic molecules a fast transition between two almost degenerate states with different spins can be triggered by a laser pulse, which leads to an electron excitation from one of the degenerate states to a highly spin-mixed state and a deexcitation to the state of opposite spin. In this paper a CO molecule is attached to one magnetic center of the clusters, which serves as an experimental marker to map the laser-induced spin manipulation to the IR spectrum of CO. The predicted spin-state-dependent CO frequencies can facilitate experimental monitoring of the processes. We show that spin flip in magnetic atoms can be achieved in structurally optimized magnetic clusters in a subpicosecond regime with linearly polarized light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.