Abstract
We have performed geometry optimizations of crystal structure and contrasted the calculated results of band structure, density of states, and permittivity of 3C-SiC for four kinds of doped supercell models: undoped, Al-doped, N-doped and Al-N codoped ones, by using the first principles plane wave ultrasoft pseudopotential method based on the density functional theory. Results show that Al doping increases the lattice constant of 3C-SiC, while N doping has little effect on the SiC lattice. The Fermi energy level introduced into valence band and the band gap is slightly widened through Al doping for 3C-SiC, and the SiC becomes a p-type semiconductor. Both the conduction band and the valence band of N-doped SiC move toward low energy side, and its band gap is slightly reduced. Intrinsic 3C-SiC has shown poor dielectric loss properties in the microwave range, but the dielectric property can be improved significantly through the Al doping or N doping, especially the former. The microwave dielectric loss performance of 3C-SiC doped with Al and N in the range of 8.2–12.4 GHz declined sharply, which validates the results of experiments. We finally analyzed and discussed the reason for the decrease of permittivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.