Abstract

AbstractResults of atomistic simulations aimed at understanding precipitation of the highly attractive wide band gap semiconductor material silicon carbide in silicon are presented. The study involves a systematic investigation of intrinsic and carbon‐related defects as well as defect combinations and defect migration by both, quantummechanical first‐principles as well as empirical potential methods. Comparing formation and activation energies, ground‐state structures of defects and defect combinations as well as energetically favorable agglomeration of defects are predicted. Moreover, accurate ab initio calculations unveil limitations of the analytical method based on a Tersoff‐like bond order potential. A work‐around is proposed in order to subsequently apply the highly efficient technique on large structures not accessible by first‐principles methods. The outcome of both types of simulation provides a basic microscopic understanding of defect formation and structural evolution particularly at non‐equilibrium conditions strongly deviated from the ground state as commonly found in SiC growth processes. A possible precipitation mechanism, which conforms well to experimental findings and clarifies contradictory views present in the literature is outlined (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.