Abstract

High stability 4H-SiC ohmic contact is currently a key technical challenge that silicon carbide devices urgently need to overcome. It is important to reduce the Schottky barrier height (SBH) at the Ni/4H-SiC interface to optimize ohmic contact. In this paper, the mechanisms of graphene layer changing Ni/4H-SiC interface Schottky barrier height (SBH) are studied based on the first-principles method within the local density approximation. Theoretical studies have shown that graphene intercalation can reduce the SBH of Ni and 4H-SiC interfaces. The reason of SBH reduction may be that the graphene C atoms saturate the dangling bonds on the 4H-SiC surface and the influence of the metal-induced energy gap state at the interface is reduced. In addition, the new phase formed at the interface of graphene and silicon carbide has a lower work function. Furthermore, an interfacial electric dipole layer may be formed at the 4H-SiC/graphene interface which may also reduce the SBH. These results make them to be promising candidates for future radiation resistant electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call