Abstract

This paper explores the properties of intrinsic gallium nitride (GaN) nanowires (NWs) in terms of formation energy, band structure, density of state (DOS) and optical properties with plane-wave ultrasoft pseudopotential method based on first-principles. Results show that after relaxation, N atoms of the outer layers move outwards, while Ga atoms move inwards, and the relaxation of surface atomic structure appears less obvious with the increasing cross-sectional area. Comparing different cross-sections of GaN NWs, it is found that the formation energy decreases and the stability goes stronger with the increasing size. With the increasing cross-section, the bandgap is decreased. Moreover, through comparative investigation in optical properties between GaN NWs and bulk GaN, a valuable phenomenom is found that the static dielectric constants of GaN NWs are notably lower, which contributes remarkably to the excellent absorbing performance of GaN NWs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.